Artificial Intelligence

 CE-417, Group 1Computer Eng. Department Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.
Courtesy: Most slides are adopted from CSE-5Z3 (Washington U.), original slides for the textbook, and CS- 188 (UC. Berkeley).

Full joint Distribution

I'm at work, neighbor John calls to say that my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Independence $\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)$

$$
\begin{array}{r}
\mathbb{P}\left(x, Y_{1}, \cdots Y_{d}\right)=\mathbb{P}(X) \cdot \mathbb{P}\left(Y_{1}\right) \cdots \mathbb{P}\left(Y_{d}\right) \\
\mathbb{P}(A \mid B)=\mathbb{P}(A)
\end{array}
$$

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information
- Diagnostic inference: from effects to causes Example: Given that JohnCalls, infer $P($ BurglarylJohnCalls)
- Causal inference: from causes to effects Example: Given Burglary, infer P(JohnCalls|Burglary) and $P($ MaryCalls|Burglary)
- Intercausal inference: between causes of a common effect
Given Alarm, we have $P($ BurglarylAlarm $)=0.376$. But with the evidence that Earthquake is true, then $P($ BurglarylAlarm \wedge Earthquake $)$ goes down to 0.003 . Even though burglaries and earthquakes are independent, the presence of one makes the other less likely. Also known as explaining away.

Independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- we write: $X \Perp Y$
- Independence is a simplifying modeling assumption

- Empirical joint distributions: at best "close" to independent
- What could we assume for \{weather, traffic, cavity, toothache\}?

Example: Independence?

Example: Independence

- N fair, independent coin flips:
$P\left(X_{1}\right)$

H	0.5
T	0.5

$P\left(X_{2}\right)$

H	0.5
T	0.5

H	0.5
T	0.5

$\mathbb{P}($ catch \mid toothache $) \neq \mathbb{P}($ Catch $)$ dependent Conditional Independence
P(toothache, cavity, catch)

$$
\rightarrow \text { catch } \mathbb{E}
$$

tooth. / Cavity <

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
\mathbb{P} (Cavity \mid-breast doncuitorifally independent of y given z $\quad X \Perp Y \mid Z$

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

$$
F \Perp A \mid S
$$

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$

$$
P(\text { Rain }) P(\text { Traffic } \mid \text { Rain }) P(\text { Umbrella|Rain, Traffic })
$$

- With assumption of conditional independence:

$$
\begin{aligned}
& P(\text { Traffic, Rain, Umbrella })= \\
& P(\text { Rain }) P(\text { Traffic } \mid \text { Rain }) P(\text { Umbrella } \mid \text { Rain })
\end{aligned}
$$

- Bayes' nets / graphical models help us express conditional independence assumptions

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Example Bayes’ Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct
 causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: it rains
- T : there is traffic
- Model 1: independence
-Why is an agent using model 2 better?

- Model 2: rain causes traffic

Example: Traffic II

- Let's build a causal graphical model!
- Variables
- T: traffic
- R: it rains
- L: low pressure
- D: roof drips
- B: ballgame
- C: cavity

Example: Alarm Network

- Variables
- B: burglary
- A: alarm goes off
- M: Mary calls
- J: John calls
- E: earthquake!

$$
\mathbb{P}\left(x_{1} \cdots x_{a}\right)=\prod \mathbb{P}\left(x_{i}\right)
$$

$\because P_{a}(x) ; \therefore$

$$
i x \Perp \geqslant \mid P_{a}(x)
$$

non-descen dunts (x)
$\backslash \mathrm{Pa}(x)$

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over x, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table
- Description of a noisy "causal" process

Chain rule $\mathbb{P}(A, B)=\mathbb{P} P(A \mid B) \cdot P(B) \leftarrow$

Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions):

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right) \\
& P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
\end{aligned}
$$

- Assume conditional independences:
\rightarrow Consequence:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

$$
P(h, h, t, h)=
$$

Example: Traffic

$$
P(+r,-t)=
$$

Example: Alarm Network $M \mathbb{B} \mid A$

B	$P(B)$
$+b$	0.001
$-b$	0.999

$\left.\begin{array}{|c|c|c|c|}\hline B & E & A & P(A \mid B, E) \\ \hline+b & +e & +a & 0.95 \\ \hline+b & +e & -a & 0.05 \\ \hline+b & -e & +a & 0.94 \\ \hline+b & -e & -a & 0.06 \\ \hline-b & +e & +a & 0.29 \\ \hline-b & +e & -a & 0.71 \\ \hline-b & -e & +a & 0.001 \\ \hline-b & -e & -a & 0.999 \\ \hline\end{array}\right\}$

Example: Traffic

- Causal direction

$P(T, R)$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- e.g. Consider the variables traffic and drips
- End up with arrows that reflect correlation, not causation
-What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Today:
- First assembled BNs using an intuitive notion of conditional independence as causality
- Then saw that key property is conditional independence
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries
 (inference)

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?

$$
2^{N}
$$

- How big is an n-node net if nodes have up to k parents?
$\mathrm{O}\left(\mathrm{N}^{*} 2^{\mathrm{k}+1}\right)$

- Both give you the power to calculate

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

- Representation
- Conditional independences
- Probabilistic inference
- Learning Bayes' nets from data

Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid p a r e n t s\left(X_{i}\right)\right)
$$

- Beyond above "chain rule \rightarrow Bayes net" conditional independence assumptions
- Often additional conditional independences
- They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

- Conditional independence assumptions directly from simplifications in chain rule:
- Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain"

- Guaranteed X independent of Z ? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
- In numbers:

$$
\begin{aligned}
& P(+y \mid+x)=1, P(-y \mid-x)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1 \\
& P(+x)=P(-x)=0.5
\end{aligned}
$$

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Guaranteed X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y)
\end{aligned}
$$

Yes!

- Evidence along the chain "blocks" the influence

Common Cause

- This configuration is a "common cause"

- Guaranteed X independent of Z ? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Project due causes both forums busy and lab full
- In numbers:

$$
\begin{aligned}
& P(+x \mid+y)=1, P(-x \mid-y)=1, \\
& P(+z \mid+y)=1, P(-z \mid-y)=1, \\
& P(+y)=p(-y)=0.5
\end{aligned}
$$

Common Cause

- This configuration is a "common cause"

- Guaranteed X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \\
& \text { Yes! }
\end{aligned}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Y independent given Z ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
- Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN , are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken
 into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph

- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: are X and Y conditionally independent given
evidence variables $\{Z\}$?
- Yes, if x and y " d-separated" by z
- Consider all (undirected) paths from X to Y

Active Triples

- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) Paths between X_{i} and X_{j}
- If one or more active, then independence not guaranteed

$$
X_{i} \not X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Otherwise (i.e. If all paths are inactive), Then independence is guaranteed

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

Example

$R \Perp B$	Yes
$R \Perp B \mid T$	
$R \Perp B \mid T^{\prime}$	

Example

$L \Perp T^{\prime} \mid T$	Yes
$L \Perp B$	Yes
$L \Perp B \mid T$	
$L \Perp B \mid T^{\prime}$	
$L \Perp B \mid T, R$	Yes

Example

- Variables:
- R: raining
- T: traffic
- D: roof drips
- S: I'm sad
- Questions:

$$
T \Perp D
$$

$$
\begin{aligned}
& T \Perp D \mid R \\
& T \Perp D \mid R, S
\end{aligned}
$$

Structure Implications

- Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- This list determines the set of probability distributions that can be represented

Computing All Independences

COMPUTE ALL THE INDEPENDENCES!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution
$\{X \Perp Y, X \Perp Z, Y \Perp Z$,
$X \Perp Z|Y, X \Perp Y| Z, Y \Perp Z \mid X\}$

Y

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net' s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Representation
- Conditional independences
- Probabilistic inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case

Exponential complexity, often better)

- Probabilistic inference is np-complete
- Sampling (approximate)
- Learning Bayes' nets from data

